113 research outputs found

    The Bradley–Terry Regression Trunk approach for Modeling Preference Data with Small Trees

    Get PDF
    This paper introduces the Bradley-Terry regression trunk model, a novel probabilistic approach for the analysis of preference data expressed through paired comparison rankings. In some cases, it may be reasonable to assume that the preferences expressed by individuals depend on their characteristics. Within the framework of tree-based partitioning, we specify a tree-based model estimating the joint effects of subject-specific covariates over and above their main effects. We, therefore, combine a tree-based model and the log-linear Bradley-Terry model using the outcome of the comparisons as response variable. The proposed model provides a solution to discover interaction effects when no a-priori hypotheses are available. It produces a small tree, called trunk, that represents a fair compromise between a simple interpretation of the interaction effects and an easy to read partition of judges based on their characteristics and the preferences they have expressed. We present an application on a real dataset following two different approaches, and a simulation study to test the model's performance. Simulations showed that the quality of the model performance increases when the number of rankings and objects increases. In addition, the performance is considerably amplified when the judges' characteristics have a high impact on their choices

    Corticolimbic catecholamines in stress: A computational model of the appraisal of controllability

    Get PDF
    Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model's prediction

    HPLC-HRMS global metabolomics approach for the diagnosis of "olive quick decline syndrome" markers in olive trees leaves

    Get PDF
    10openInternationalItalian coauthor/editorOlive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants. The onset of this economically devastating disease has been associated with a Gram-negative plant pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution mass spectrometry detection is one the most widely applied technologies in metabolomics, as it provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the ability to identify metabolites. The purpose of this work is the development of a global metabolomics mass spectrometry assay able to identify OQDS molecular markers that could discriminate between healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds highly expressed in the OP group were annotated; results obtained by this metabolomic approach could be used as a fast and reliable method for the biochemical characterization of OQDS and to develop targeted MS approaches for OQDS detection by foliage analysisopenAsteggiano, A.; Franceschi, P.; Zorzi, M.; Aigotti, R.; Dal Bello, F.; Baldassarre, F.; Lops, F.; Carlucci, A.; Medana, C.; Ciccarella, G.Asteggiano, A.; Franceschi, P.; Zorzi, M.; Aigotti, R.; Dal Bello, F.; Baldassarre, F.; Lops, F.; Carlucci, A.; Medana, C.; Ciccarella, G

    Biweekly Hizentra® in Primary Immunodeficiency: a Multicenter, Observational Cohort Study (IBIS)

    Get PDF
    Immunoglobulin G (IgG) replacement therapy is a standard treatment for patients with primary immunodeficiency diseases (PIDs). Hizentra®, a 20% human subcutaneous IgG (SCIG), is approved for biweekly administration for PIDs. The aim of the multicenter IBIS study was to prospectively investigate the efficacy of biweekly Hizentra® compared with previous IVIG or SCIG treatment regimens in patients with PIDs. The study consisted of a 12-month retrospective period followed by 12-month prospective observational period. The main endpoints included pre-infusion IgG concentrations, proportion of patients with serious bacterial infections (SBIs), other infections, hospitalizations due to PID-related illnesses, and days with antibiotics during the study periods. Of the 36 patients enrolled in the study, 35 patients continued the study (mean age 26.1 ± 14.4 years; 68.6% male). The mean pre-infusion IgG levels for prior immunoglobulin regimens during the retrospective period (7.84 ± 2.09 g/L) and the prospective period (8.55 ± 1.76 g/L) did not show any significant variations (p = 0.4964). The mean annual rate of SBIs/patient was 0.063 ± 0.246 for both prospective and retrospective periods. No hospitalizations related to PIDs were reported during the prospective period versus one in the retrospective period. All patients were either very (76.5%) or quite (23.5%) satisfied with biweekly Hizentra® at the end of the study. In conclusion, the IBIS study provided real-world evidence on the efficacy of biweekly Hizentra® in patients with PIDs, thus verifying the data generated by the pharmacometric modeling and simulation study in a normal clinical setting

    A Mediterranean Diet Mix Has Chemopreventive Effects in a Murine Model of Colorectal Cancer Modulating Apoptosis and the Gut Microbiota

    Get PDF
    Objectives: Unhealthy dietary patterns have been associated with colorectal cancer (CRC) onset while Mediterranean Diet (MD) has been proposed for CRC prevention. This study evaluated the effect of a Mediterranean Diet Mix (MD-MIX) on colonic tumors development in A/J mice fed a low-fat (LFD) or a high-fat western diet (HFWD), and injected with the procarcinogen azoxymethane (AOM).Materials and Methods: Forty A/J male mice were randomly assigned into four feeding arms (10 mice/arm; LFD, LFD-MD-MIX, HFWD, HFWD-MD-MIX) to be treated with AOM. Ten mice were exposed to the diets alone (Healthy LFD and Healthy HFWD) to be used as control. Tumor incidence and multiplicity were evaluated at sacrifice. Mucosal fatty acid content and urinary phenolic compounds were assayed by mass spectrometry. Apoptosis was evaluated by TUNEL assay and gene expression markers. Cell proliferation was evaluated by Ki67 immunohistochemistry. Microbiota composition was assessed at different time points by 16S RNA sequencing.Results: A tumor incidence of 100% was obtained in AOM-treated mice. The MD-MIX supplementation was able to reduce the number of colonic lesions in both LFD and HFWD-fed mice and to induce apoptosis, in particular in the LFD-MD-MIX arm. Moreover, a preventive effect on low-grade dysplasia and macroscopical lesions (>1 mm) development was found in HFWD-fed mice together with a regulation of the AOM-driven intestinal dysbiosis.Conclusions: MD-MIX was able to counteract CRC development in mice under different dietary backgrounds through the regulation of apoptosis and gut microbiota

    Transcriptional Hallmarks of Noonan Syndrome and Noonan-Like Syndrome with Loose Anagen Hair

    Get PDF
    Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is genetically heterogeneous, being caused by germline mutations affecting various genes implicated in the RAS signaling network. This network transduces extracellular signals into intracellular biochemical and transcriptional responses controlling cell proliferation, differentiation, metabolism, and senescence. To explore the transcriptional consequences of NS-causing mutations, we performed global mRNA expression profiling on peripheral blood mononuclear cells obtained from 23 NS patients carrying heterozygous mutations in PTPN11 or SOS1. Gene expression profiling was also resolved in five subjects with Noonan-like syndrome with loose anagen hair (NS/LAH), a condition clinically related to NS and caused by an invariant mutation in SHOC2. Robust transcriptional signatures were found to specifically discriminate each of the three mutation groups from 21 age- and sex-matched controls. Despite the only partial overlap in terms of gene composition, the three signatures showed a notable concordance in terms of biological processes and regulatory circuits affected. These data establish expression profiling of peripheral blood mononuclear cells as a powerful tool to appreciate differential perturbations driven by germline mutations of transducers involved in RAS signaling and to dissect molecular mechanisms underlying NS and other RASopathies. Hum Mutat 33:703–709, 2012. © 2012 Wiley Periodicals, Inc
    corecore